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AbstracC-In a previous paper [Ent. J. Heuat Mass Transfer 25,ll l-l 17 (1982)] variational principles had 
been given from which upper and lower bounds for the effective thermaf contact resistance may be deduced. 
In the present paper this method is used to determine upper bounds for arbitrary geometry and distribution 
of the contact spots. The bounds are functionals of the two-point correlation function of the local contact 
resistance. Special attention has been paid to a binary model admitting only two discrete values for the local 
contact resistance inside and outside the direct contact areas, respectively. The constriction resistance is 
mainly characterized by a correlation length of the contact spots. The results are compared to a special bound 

for circular contact spots obtainid in the earlier work. 

NOMENCLATURE W 519 random local contact resistance ; 

are5L ; W Gff> effective value of w,,; 

area fraction ; w +, w-3 upper and lower bound of w,~~, 

operator defined by equation (3.6); respectively ; 

stochastic function of position defined by wi, we, local contact resistance inside and outside 

equation (3.7); a contact, respectively; 

constant defined by equation (5.3); wo9 constant parameter; 

arbitrary function of position ; W’, stochastic part of w,, defined by equation 

inversion operator of L, ; (3.1). 

pair correlation function of the circle 
centres ; Greek symbols 

integral operator defined by equation FW, r, correlation functions defined by equa- 

(1.3); tions (2.5) and (2.14), respectively; 

Bessel function of first order; YI variational parameter; 

thermal conductivity; Ye1 optimal value of y ; 

vector of Fourier space; Q, O”, step functions defined by equations (2.8) 

non-stochastic operator defined by equa- and (6.2), respectively ; 

tion (3.1); rp5 ‘PI, given functions defined by equations 

correlation length defined by equation (6.11) and (6.13), respectively. 

(2S3); 
characteristic length defined by equation 1. INTRODUCTION 

W9; THS paper is devoted to the estimation of the thermal 
number of single contacts; or electric contact resistance-between two bodies with 
area density of contacts ; rough surfaces. The phenomenon of contact resistance 
projection operator defined by equation is mainly caused by two effects. The first one is due to 
(1.4); the surface roughness, i.e. the twa bodies are directly 
pair distribution function of the circle connected only at sonx spots, and, therefore, the heat 
centres ; flow is constricted near these spots. This contribution 
heat Bow; to the macroscopic contact resistance is called con- 
z-component of the heat flow density; striction resistance. The second effect-the local con- 
trial function of q ; tact resistance at the contact spots-is strongly in- 
constant heat flow density; fluenced by the presence of oxide or liquid layers. 
2-dim. position vector (x, y); Therefore, we shall call it film resistance. This quantity 
effective thermal contact resistance ; is assumed to be known and enters as a parameter in to 
radius of a circular contact spot ; the present calculations. Our aim is to determine the 
constant temperature jump; constriction resistance. 
jump in temperature ; Previous estimations of the constriction resistance 
trial function of AT; have been based on special models for the geometry of 
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the rough surfaces. In most of them a regular arrange- 
ment of single circular contact spots is considered. In 
practice, however, there exist very different arrange- 
ments and various shapes of the contact spots and it is 
not clear to what extent the results obtained for special 
models are valid in more general cases. 

In a previous paper [l] the authors proposed an 
alternative approach to this problem. Instead of 
calculating approximate values, one may determine 
rigorous lower and upper bounds for the effective 
contact resistance by means of variational principles. 
The method has been developed for the following 
model. The rough surfaces are approximated by the 
plane z = 0. The heat transport across this plane is 
determined by a random local contact resistance 
defined by 

A(R) 
w,,(R) = W/2)- 

0) ’ 
R = (x, y) (1.1) 

where K denotes the thermal conductivity of both 
bodies in contact. The local contact resistance w,, 
describes the geometry and the positions of the contact 
areas as well as the film resistance caused, for instance, 
by surface layers. In general, w,,(R) takes low values 
inside the areas of direct contact and high values 
outside them. Due to the strong variations of w,,, the 
jump in temperature at the surfaces AT(R) as well as 
the heat flow density q(R) are strongly fluctuating 
functions of position. Besides equation (1 .l) these two 
quantities are connected by the following integral 
equation derived in [l] 

PAT(R) = (2/K) JPq(R) (1.2) 

where the integral operator J, applied to an arbitrary 
function f, is defined by 

Jf(R) = 
s 

d’R’&(R + R’). (1.3) 

The projection operator P yields the deviations of a 
function f from its mean value (f) 

Pf(R) =f(R) - <f(R)) (1.4) 

where the angular brackets denote an average over an 
area A very large compared to the single contact spots 

<f(R)) = f d’Rf(R). 
s 

(1.5) 
A 

In the following we always take the limit of an 
infinite plane A -+ G The effective thermal contact 
resistance Reff measured in a macroscopic experiment 
is giyen by 

Reff = y 

with the total heat flow 

Q = [ d’Rq(R) = A(q). (1.7) 
JA 

Analogously to equation (1.1) we can define an 

effective quantity weff 

K <AT) 
Weff 

=_~ 
2 (4) 

(1.8) 

Rerr = $ w,w (1.9) 

By the aid of variational principles given in ref. [ 11, 
we may derive various upper and lower bounds w + and 
w_ confining the actual value of w,rr (or R,,,) to the 
interval 

w, 2 W&f 2 w_. (1.10) 

The bounds involve statistical information about the 
local contact resistance w,,. To get a good estimation of 
weff, the bounds should be as narrow as possible. 

In this paper we only deal with general upper 
bounds which can be obtained from the following 
variational principle [l] 

W + = <4>-* <8w,, + JP)q’) 2 W,ff (1.11) 

For every 4 equation (1.11) yields an upper bound on 
weff. Equality holds for the exact heat flow density 6 = 
q(R) satisfying the stochastic integral equation 

(% + JP)q = (w,,q) = Weff (4). (1.12) 

In order to derive a useful bound we have to choose a 
trial function G(R) which fits the exact field q(R) 
sufficiently well. 

In section 2 we start with very simple trial functions 
for the heat flow density to deduce bounds according 
to equation (1.11). To get a better bound, a more 
sophisticated trial function is constructed in section 3. 
By means of this function a general expression for an 
upper bound including only the two-point moment of 
the stochastic field w,,(R) is derived in section 4. In 
section 5 this bound is specified to a binary model for 
the local contact resistance. Finally in section 6 a 
comparison is made with a bound previously obtained 
for an arbitrary distribution of circular contact spots 
[l]. Numerical results are drawn for a triangular 
lattice. 

2. SIMPLE UPPER BOUNDS 

To calculate an upper bound according to equation 
(1.11) we have to choose a trial function q(R) for the 
heat flow density. The simplest approximation is a 
constant field 

G(R) = qo (2.1) 

which yields 
W + = <W,,(R)). (2.2) 

In general this bound is not very satisfactory. In the 
case of an infinite local contact resistance outside the 
contact spots this bound even diverges. 

We find a more reasonable bound if we choose the 
trial function 4 in stzh a way that the corresponding 
temperature jump AT becomes constant, i.e. 

K A?(R) KT, 
A?-(R)=T,;d(R)=-p=--- 

2 w,,(R) 2wsSR) 
(2.3) 
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Inserting this expression into equation (1.11) we get 
the following bound 

1 

X2sR’ > R’) 

=($)-I + Sd'R'&(R') (2.4) 

where 

According to equation (1.5) the angular brackets 
always mean an average with respect to the position R. 
The bound (2.4) contains only partial information 
about the localcontact resistance w,,. Besides the mean 
value of l/w,,, only the two-point moment of this 
stochastic quantity is involved. It characterizes the 
correlation between the values of l/w,, at two different 
points separated by the vector R’. 

In order to illustrate the meaning of the bound (2.4) 
let us consider the special example of a ‘binary’ model 
in which the stochastic parameter w,, takes only two 
values wi and w, inside and outside the contact spots, 
respectively 

w,,(R) = w,@(R) + w,(l - O(R)) 

= (wi - w,)@(R) + w,, (2.6) 

O(R)+l, (2.7) 
WC 

where the step function 0 is defined by 

B(R) = 
1 for R in a contact spot, 

0 otherwise. (2.8) 

This model represents a good approximation to the 
actual situation in many practical cases. Inserting 
equation (2.7) into the bound (2.4), we obtain 

((O(R)O(R + R’)) - a’) 

(2.9) 

(2.10) 

where 

d: = aw, + (1 - a)wi (2.11) 

a: = (O(R)) (2.12) 

1,: = 
s 

dZR &r(R) (2.13) 

r(Ry = &[(c+(R)@(R + R’)) - a’]. (2.14) 

The symbol a denotes the area fraction of the 
contact spots. The function I’(R) depends only on the 
geometry of the contact area. It is defined in such a 
manner that 

l-(O) = 1 

,,;T, l-(R) = 0. 
(2.15) 

The latter equation expresses the fact that for large 
distances there is no correlation between the contact 
areas. A rough measure for the range of the correlation 
function T(R) is given by the parameter I, which, 
therefore, we shall call correlation length. In general, it 
is of the same order as the size of a single contact spot. 

As mentioned above, the upper bound (2.10) 
consists of a term describing the paral!el connection of 
the local contact resistances and another term due to 
the constriction of the heat flow density. It turns out 
that the constriction effect is mainly characterized by 
the correlation length I,. For the limiting cases a = 0 
and a = 1 the bound (2.10) becomes equal to the exact 
values w, and wir respectively. The limit wJwi + s is of 
particular interest. It means that there is no heat 
transfer outside the contact spots. Then equation 
(2.10) reduces to 

wi l-u 
w -- +- + - 1 C* 

a a 
(2.16) 

This bound is simply the sum of the film resistance of 
the contact spots and the constriction resistance which 
now only depends on the geometry of the contacts. 

The upper bounds obtained in this section are based 
on very simple trial functions G(R). It is possible to 
derive a more restricting upper bound without includ- 
ing more information about w,, than in bound (2.10), 
i.e. the two-point correlation function l-JR’). To this 
end we are going to construct a new, more appropriate 
trial function in the next section. 

3. CONSTRUCTION OF A TRIAL FUNCTION 

To derive a suitable trial function we start from 
equation (1.12) which determines the exact field q(R). 
A formal solution may be obtained as follows [2, 31. 
We first split up the operator w,, + fP into a 
homogeneous non-stochastic operator L, and a sto- 
chastic term w’ 

L,: = wg f JP 
(3.1) 

w’(R) = w,,(R) - wO, 

Theconstant parameter w0 will be fixed later. Inserting 
the decomposition (3.1) into equation (1.12) we obtain 

(LJ + Pw’)q = w,(q) = L,(q). (3.2) 

The last equality holds because P(q) = 0. Using 
operator caiculus and denoting the inversion of an 
operator by the exponent ‘ - 1’ and the unity operator 
by ‘l’, we can transform equation (3.2) into 
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(1 - L,’ Pw’)q = (q) 
(3.3) 

q = (1 + G,Pw’)-’ (q), G,:=L,‘. 

Equation (3.3) represents only a formal solution of 
equation (1.12) since the inversion of the operator 
(1 + G,Pw’) is unknown. In order to construct a 
practicable trial function we could replace G, by a 
number but this would lead back to an expression 
of the type (2.3). Therefore we first transform equation 
(3.3) into 

q = (1 + G,Pw’ - G,Pw’)( 1 + G,Pw’) - ’ (q) 
(3.4) 

= [l - G,Pw’ (1 + G,Pw’)-‘1 (q) 

and then replace the operator G, in the denominator 
by a constant parameter y. The result is the trial 
function 

4’= (1 + G,PR)(q) (3.5) 

with 

B:= - ~‘(1 + yPw’)-‘. (3.6) 

Since in the following the operator B is only applied to 
a constant field (q) we may also write (see Appendix) 

B(q) = b(q) (3.7) 

b:= - ~‘(1 + yw’)-’ ((1 + yw’)-‘)-I (3.8) 

where b is not an operator but an ordinary function of 
position. 

4. A GENERAL UPPER BOUND 

Inserting the trial function (3.5) into the variational 
principle (l.ll), we obtain the bound 

w(:) = (4_)-‘([(l + G,Pb)(cj)] 

x (w’ + W[(1 + G,Pb)<$l). (4.1) 

Since the operator L,, G, and P are self-adjoint in the 
sense of 

(f,(R)&f,(R)) = <f,Wd-I(R)) (4.2) 

where fr and f2 are arbitrary functions of position, 
equation (4.1) may be transformed into 

w(:) = (L, + w’ + 2Pb + 2w’G,Pb 

+ bPG,Pb + bPG,w’G,Pb). (4.3) 

Because of the definitions (1.4) and (3.8) the relations 

(P .) = 0 (4.4) 

and 

yw’Pb) = yw’(b-(b))) = (-w’-b)) (4.5) 

hold. With their help, expression (4.3) becomes, after 
some transformations, 

(1) - w+ - (% - b - b(G, - y)Pb 

+ bP(G, - y)w’(G,, - y)Pb). (4.6) 

The last term on the RHS of equation (4.6) contains 
two integral operators G,. Hence its calculation 

requires the knowledge of the three-point moment 
(b(R,)w’(R,)b(R,)) of the stochastic fields b(R) and 
w’(R). In most practical cases this information will 
hardly be available. But we can eliminate this term by 
choosing 

w,, = max(w,,(R)), w’ = w,, - w0 I 0. (4.7) 

Then the term becomes negative definite and if we omit 
it we obtain a new, greater upper bound 

w - wo-(b)-(h(G,-?;)Pb) 2 w’:) 2 wcff. +- 
(4.8) 

Let us recall that G, is an integral operator and, 
therefore, the last term reads in more detail 

(b(G, -y)Pb) = j d*R’(b(R)[G,(R - R’) 

- y&R -R’)]Ph(R’)). (4.9) 

The bound (4.8) involves only a two-point moment of 
the stochastic quantity b. The explicit form of the 
operator G, can easily be obtained in the Fourier 
representation. Let us define a function v by 

v(R) = G,Pb. (4.10) 

Its mean value vanishes 

<v(R)) = G, (Pb) = 0 (4.11) 

due to the definition of P( 1.4). Applying the operator 
L, to equation (4.10) yields the integral equation 

&v(R) = (w,, + JP)v = (w,, + J)v = P&R) (4.12) 

for v. A Fourier transformation leads to 

(wO + k- ‘) v(k) = Pb(k) 

v(k) = G,(k)Pb(k) = (w” + k-‘)-‘Pb(k). (4.13) 

The kernel function G,(R) could be obtained from an 
inverse tansformation according to 

G,(R)P = J d2k eikR G(k)P 

= Jd2keiLR(w, + km’)-‘P. (4.14) 

But in the following only the Fourier representation 
G,,(k), equation (4.13), will be used. 

Let us recall that equation (4.8) represents a bound 
for arbitrary values of y. In order to get an upper bound 
as low as possible we have to minimize expression (4.8) 
with respect to the open parameter y. Using the self- 
adjointness of the corresponding operators and the 
identity 

c-(b) = (bPb), 
(‘1 

(4.15) 

we obtain the following implicit equation which 
determines the optimal value of 1 

2 = 2@~~ - y)Pb)= 0. (4.16) 

We have to bear in mind that the function b(R) also 
depends on y. Therefore, only in special cases the 
optimal value of 7 can be’ calculated explicitly from 
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equation (4.16). In the next section we shall consider a bound (4.8). From equations (5.4) and (5.2) it is easy to 
binary model of w,,. In this case, the solution of see that the term (b(G, - y,,)Pb) vanishes together 
equation (4.16) can easily be found. with (5.4). Therefore, the bound reduces to 

5. BOUND FOR A BINARY MODEL 

In the binary model we assume that according to 
equation (2.6), wSt takes only two distinct values wi and 
w, inside and outside the contacts, respectively. Then 
equation (4.7) requires 

W - We - @(RD. +- (5.10) 

Inserting (5.2) into equation (5.10) we obtain, after 
some straightforward algebra, 

We[Wi+(l -~)U-wilw,K1 
w - 

_ t5.11j 
+ - (1 -a)w,+aw,+(1 -a)(1 -wJw,)I, 

w(J = w, > wi (5.1) 

and the function b(R) given by equation (3.8) takes the 
simple form 

b(R) = b@(R) (5.2) 

hi = (w, - wi)[l - j(1 - a)(~, - wi)]-‘. (5.3) 

Let us now calculate the parameter y0 determined by 
equation (4.16). Inserting equation (5.2) into equation 
(4.16), we find 

2b, $ [(@(Go - y)PO)] = 0. (5.4) 

In more detail this equation reads (y + y,,) 

s dzR’G,(R’)(O(R)PO(R + R’)) = y,(O(R)PO(R)) 

y,, = ++I d2R’Go(R’)[(o(R)o(R+R’)) - u’] 

This upper bound is the main result of this section. It 
depends only on the two discrete values of the local 
contact resistance, on the area fraction of the contacts 
and on the parameter t which is a functional of the 
correlation function I- according to equation (5.8). For 
the limiting cases a = 0 and a = 1 equation (5.11) 
yields the exact values w+ = w, and w + = wjr 
respectively. In the limit w, = rc: the bound (5.11) 
coincides with the bound (2.16). For finite w, the 
bound (5.11) proves to be always lower than the bound 
(2.16). In most cases the relations w, >> I,, wi will be 
satisfied. Then an expansion of equations (5.8) and 
(5.11) yields 

i_=l,- (5.12) 

= s d’R’G,(R’)I-(R’) (5.5) 

where the correlation function T(R’) is defined in 
equation (2.14). Using the Fourier transformation of 
the operator G, (4.13) and taking into account equa- 
tion (5.1), we can rewrite equation (5.5) in the form 

y0 = &jd’k(wC+K’)-’ I-(k), 

wi l-u 1 - a wi + I, 
W += -+ ( ---11, l-p- 

a a >( a W, ! 

we l-al c w, + w = 0) 
a W, 

( , -lnT 
2% C > 

+ (5.13) 

6. CIRCULAR CONTACT SPOTS 

r(k) = $1 d2ReiLRr(R). (5.6) 

To discuss the limit w, + x it is more convenient to 
express y0 as follows 

To check the usefulness of the bound obtained in 
equation (5.11) let us now calculate it for the special 
case of an arrangement of circular contact spots of 
equal radii. For this model an upper bound had 
already been derived in a previous paper [l] by the use 
of another trial function adapted to this special 
geometry. Moreover, this calculation had been re- 
stricted to the limiting values wi = 0 and w, = CC. As 
discussed above, in this case the bound (5.11) reduces 
to the last term of equation (2.16) which we want to 
compare now to the result previously obtained in [ 11. 
The contact area is described by a sum 

Yo = ${$j@k(l - +&(k)} 
=L 

WC 
r(R=o)_~}=$(l -$) (5.7) 

with 

c = $ 
s 

d2k & l-(k). (5.8) 

The characteristic length t depends on w, but in the 
limit w, -+ cc it coincides with the geometrical quan- 
tity I, already defined in equation (2.13) and which 
reads in Fourier representation 

1 
I + I, = & 

s 
d2ki T(k) for w, -+ 3=. 1 (5.9) 

Now let us return to the calculation of the upper 

O(R) = ~CY(R - Ri) (6.1) 

O’(R) = ; for [RI >< R, (6.2) 

where 0’ characterizes a single contact spot of radius 
R, and Ri denotes the centre of the ith contact. 
Inserting equation (6.1) in (2.13) we find the special 
correlation function 

r(K) = &[~<O~(R-R,)W(R+R.-R~)~ -a2 

LJ 1 
=p 
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+ 1 (O’(R-Ri)O’(R+R’-R,)) - U’ . (6.3) i#j 1 
Due to the definition of the angular brackets (1.5) the 
average (W(R - R,)O’(R + R’- Rj)) depends only on 
the difference vector (R’ + Ri - Rj). Considering a very 
large area A -+ x8 with a great number of single 
contacts N + x, (N/A = n = const.), we may replace 
the sum over the pairs i # j by an integration over the 
difference vector (Ri-Rj) + R, weighted by the pair 
distribution function p(R,) normalized to (N - 1). In 
the following instead of p we shall use the pair 
correlation function g(RJ of the contacts which is 
related to p(R,) by 

P&) = 41 + dRJ1 (6.4) 

so that g vanishes at infinity. Now equation (6.3) can be 
written as 

1-(R’) = & [N(@“(R)@“(R + R’)) 

+ N s d%(l + g(W) 

x (O’(R)O’(R+R+R,)) - a’] 

or, according to equation (1.5) 

(6.5) 

1-(R’) = & [n s dZROc(R)Oc(R +R’) 

+ n2 j dZR, j d’R(1 + g(K)) 

x O”(R)O’(R+R’+R,) - u’]. (6.6) 

This equation contains convolution integrals which 
may be reduced to products by a Fourier transfor- 
mation. Then, using 

a = nnR6 (6.7) 
and 

s d2Rei* W(R) = F J, (kR,) (6.8) 

where J, is the Bessel function of first order, we obtain 

If equation (6.9) is inserted into expression (5.9) for I,, 
the bound (2.16) becomes for wi = 0 

W 

where 

p(p):=2 
s 

J dx J: (x) 
xz Jo(v). (6.11) 

n 0 

The bound obtained in [l] has a completely analogous 
form. To distinguish it from the present result we 
designate it by an index 1 

(w+)~ = a$ + R, (6.12) 

where 

cpl(p):= $ 
s 

d*p’(l _ p’2)-1,2 @c@‘) 

x 
1 
;o’(p-p’) + (1 - @‘(p-p’) 

7 
x arcsin(lp - p’l-‘) (6.13) 

For small area fractions of the contacts a << 1 the first 
terms in the bounds (6.10) and (6.12) become pre- 
dominant. They correspond to the parallel connection 
of isolated circular contact spots. In the limit a -+ 0 the 
first term of (6.12) gives the exact result because the 
exact heat flow distribution of an isolated circular 
contact 

q(R) = 
qoU'- R*/R;) 
o 

for R >< R, (6.14) 

had been used to derive this bound. Contrarily, the 
bound (6.10) has been calculated by assuming a 
constant heat flow density inside the contact spot 
according to equation (2.3). Despite this crude approxi- 
mation the first term in (6.10) lies only 8% above the 
corresponding exact contribution in equation (6.12). 

The second terms in the bounds containing the 
correlation function g differ only little from one 
another. This can be seen from Fig. 1 representing the 
functions cp and ‘p,. Their maximal difference amounts 
about 10% for small values of p and their asymptotic 
behaviour for p -+ cc is the same. In order to illustrate 
the influence of these terms for finite area fractions, the 
bounds (6.10) and (6.12) have been calculated for a 
triangular lattice of circular contact spots. The results, 
multiplied by the factor 4a/nR,, are plotted in Fig. 2. 

In general the bound w + lies above the bound (w +), 
previously obtained. This is not surprising because, in 
order to derive (w+)~, the special shape of the contact 
spots has been taken into account from the beginning, 
whereas the bound w + contains information about the 
geometry only in form of the two-point correlation 
function r which does not uniquely characterize the 
shape of the contact spots. 

0.3 r 

0.2 

9-- 

+- 

0.1 

FIG. 1. Numerical calculation of the functions cp and ‘p, 
defined by equations (6.11) and (6.13), respectively. 
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1.2 

0.6 

d 
I; 

; 

i: 

.J 0.4 

0 

0 0.2 04 0.6 06 

FIG. 2. Upper bounds w+ (6.10) and (w+)~ (6.12) (multiplied 
by the factor 4o/rrR,) for a triangular lattice of circular 

contact spots as function of the area fraction a. 

7. CONCLUSION 

Starting from a variational principle given in a 
previous work [l], we have calculated upper bounds 
for the macroscopic or effective contact resistance. By 
the use of a simple trial function for the heat flow 
density we could obtain a bound which involves only 
the two-point correlation function of the random local 
contact resistance. It consists of two terms. The first 
one corresponds to the parallel connection of the local 
contact resistances. The second one is a functional of 
the two-point correlation function and may be in- 
terpreted as an estimation of the constriction effect. A 
more restrictive bound without including more infor- 
mation about the local contact resistance could be 
derived by means of a more sophisticated trial func- 
tion. This bound has been discussed for the special 
case of a binary model in which the local contact 
resistance takes only two distinct values inside and 
outside the contact spots, respectively. If the local 
contact resistance outside the contacts is very high, the 
two bounds differ only slightly from one another. To 
test the quality of the general bound derived in this 
paper, we have applied it to the special geometry of an 
arbitrary arrangement of identical circular contact 
spots and then compared the result to a special bound 
derived previously for this case. The agreement is 
satisfactory. 

In order to apply the bound derived above we need 
the values of the local contact resistance as well as the 
two-point correlation function of the contact area 
distribution. Both must be taken from experiments or 
from other considerations. To get a satisfactory es- 
timate of the effective contact resistance it would be 
desirable to find also lower bounds. But, unfor- 
tunately, the derivation of lower bounds seems not to 
be possible without very special assumptions about the 
geometry of the contact spots. 

APPENDIX 

Proofofequation (3.8) 

Let us set 

or 

Y = (1 + yPw’)_’ (q) (Al) 

(1 + gPw’)v = (1 + yw’)v - y(w’v) = (4). (A2) 

Because of (P . . .) = 0 an average over (A2) yields 

(v> = (4). (A3) 

From (A2) we find 

and 

v = (1 + yw’)_’ ((4) + y(w’v)) (A4) 

(v> = ((1 + YW’)_’ ((4) + v<w’v)). (A5) 

Dividing (A4) by (A5) and considering (A3) gives 

v=(l +yPw’)-‘(q) 

= (1 + yw’)_’ ((1 + yw’)_I)-’ (4). (A6) 

Apart from a factor (-w’) this agrees with relation (3.8). 
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LIMITE SUPERIEURE DE LA RESISTANCE DE CONTACT THERMIQUE 
EFFECTIVE ENTRE DEUX CORPS A SURFACES RUGUEUSES 

Rbum&Dans un article prkkdant [lnt. J. Heat Mass Transfer 25, 111-117 (1982)] des principes 
variationels ont tt6 donnis, P partir desquels des limites infkieures et supkieures de la rbistance de contact 
effective peuvent 6tre dbduites. Ici on utilise cette m&hode pour dkterminer des limites supkrieures pour une 
distribution et des formes arbitraires des taches de contact. L.es limites dipendent de la fonction de 
correlation binaire de la rkistance de contact locale. En particulier, on considtre un moddle binaire 
n’admettant que deux valeurs disc&es de la risistance de contact locale, B savoir B l’intbrieur et I l’exttrieur 
des taches de contact. La rksistance de constriction est surtout caractCris& par une longueur de correlation 
des taches de contact. Les rksultats obtenus sont cornparts I la limite spkiale pour des taches circulaires 

donnke dans l’article prkkdant. 
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OBERE GRENZEN FUR DEN EFFEKTIVEN WARMEUBERGANGSWIDERSTAND 
ZWISCHEN KGRPERN MIT RAUHEN OBERFLACHEN 

Zusammenfassung-In einer friiheren Arbeit [Int. J. Heat Mass Transfer 25, 111-117 (1982)] wurden 
Variationsprinzipien angegeben, mittels derer obere und untere Grenzen fur den effektiven WBjmeiibergangs- 
widerstand berechnet werden kdnnen. In vorliegender Arbeit wird diese Methode zur Bestimmung oberer 
Grenzen bei beliebiger Form und Verteilung der einzelnen Kontakte angewandt. Die Grenzen ergeben sich 
als Funktionale der Zweierkorrelationsfunktion des lokalen Kontaktwiderstandes. Insbesondere wurde ein 
binares Model1 betrachtet, in welchem der lokale Kontaktwiderstand nur zwei diskrete Werte innerhalb bzw. 
auBerhalb der KontaktBbhen besitzt. Der Konstriktionswiderstand wird im wesentlichen durch eine 
Korrelationslange der Kontaktfllchen charakterisiert. Die Ergebnisse werden mit der in der friiheren Arbeit 

speziell fur kreisformige Kontakte erhaltenen Grenze verglichen. 

BEPXHME I-PAHMHbI 3@@EKTRBHOFO KOHTAKTHOIO TEIIJIOCOIIPOTHBJIEHMSl 
MExflY TEJIAMH C IIIEPOXOBATMMH IIOBEPXHOCTIIMM 

AHHoTauwn - B npenbtnymeii pa6ore [I, Inf. J. Henr Mass Transfer, 25, I1 l-l 17 (1982)], eapaauaos- 
HbIe IIpkiHIUiIIbI 6bImi ACIIOJlb30BaHbI LWI IIOny'IeHHS HWKHAX A BepXHAX rpaH5iII 3+$eKTkiBHOTO 

KOHTaKTHOrO TeNIOCOIIpOTHBneHWI. B HaCTOSIUefi pa6o’re rtC"Onb3yeTCK 3TOT MeTOA L,."S BblWfCneHIlll 

BepXHHX rpaHAII II&?&i nm6oii reOMeT)WiH M paCIlpe~eneHWI o6nacre8 COIIPAKOCHOBeHEUI. rPEiHAUb1 

~Bn~~TC~~yHK~UOH~~MU~~~HO~KO~~nRUUOHHO~~yHK~UUnOK~nbHO~O KOHTBKTHOrO COnpOTHBne- 

HAK. B HaCTHOCTH 6btna PaCCMOTpeHa 6EiHapHax MOAenb, B KOTOPOii CyWeCTByIOT TOnbKO ABa 

3HageHkfR JIOKUIbHOrO KOHTaKTHOrO COIIpOTBBneHHfl nrl6o BHe na6o BHyTPH KOHTaKTHbIX o6nacreii. 
COIlpOTABneHHe CTSII-BBaHIlR XapaKTepH3yeTCn KOp~nFILWOHHOi? AnHHOti o6nacrel COIIPHKOCHOBeHkiI. 

k3ynbTaTbI CpaBHHBaIOTCS CO CIIeIWJIbHOfi rpaHEiIteii DE? KpyrnbIX o6nacrefi COnPkiKOCHOBeHWl, 

rlonyreHoii B [I]. 


