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Abstract—In a previous paper [Int. J. Heat Mass Transfer 25, 111-117 (1982)] variational principles had
been given from which upper and lower bounds for the effective thermal contact resistance may be deduced.
In the present paper this method is used to determine upper bounds for arbitrary geometry and distribution
of the contact spots. The bounds are functionals of the two-point correlation function of the local contact
resistance. Special attention has been paid to a binary model admitting only two discrete values for the local
contact resistance inside and outside the direct contact areas, respectively. The constriction resistance is
mainly characterized by a correlation length of the contact spots. The results are compared to a special bound
for circular contact spots obtained in the earlier work.

NOMENCLATURE Weps random local contact resistance;
area; Weps effective value of w,,;
area fraction ; w,, w_, upper and lower bound of w,,

operator defined by equation (3.6);
stochastic function of position defined by
equation (3.7);

constant defined by equation (5.3);
arbitrary function of position;

inversion operator of Lg;

pair correlation function of the circle
centres;

integral operator defined by equation
(1.3);

Bessel function of first order;

thermal conductivity;

vector of Fourier space;

non-stochastic operator defined by equa-
tion (3.1);

correlation length defined by equation
(2.13);

characteristic length defined by equation
(58);

number of single contacts;

area density of contacts;

projection operator defined by equation
(14);

pair distribution function of the circle
centres;

heat flow;

z-component of the heat flow density;
trial function of ¢;

constant heat flow density;

2-dim. position vector (x, y);

effective thermal contact resistance;
radius of a circular contact spot;
constant temperature jump;

jump in temperature;

trial function of AT';

respectively;
w;, w,,  local contact resistance inside and outside
a contact, respectively;

Wo, constant parameter;
W, stochastic part of w,, defined by equation
3.0

Greek symbols

I, I, correlation functions defined by equa-
tions (2.5) and (2.14), respectively;

7, variational parameter;

Yo optimal value of 7,

®, 8¢, step functions defined by equations (2.8)
and (6.2), respectively;

@, 9, given functions defined by equations

(6.11) and (6.13), respectively.

1. INTRODUCTION

THis paper is devoted to the estimation of the thermal
or electric contact resistance between two bodies with
rough surfaces. The phenomenon of contact resistance
is mainly caused by two effects. The first one is due to
the surface roughness, i.. the two bodies are directly
connected only at some spots, and, therefore, the heat
flow is constricted near these spots. This contribution
to the macroscopic contact resistance is called con-
striction resistance. The second effect—the local con-
tact resistance at the contact spots—is strongly in-
fluenced by the presence of oxide or liquid layers.
Therefore, we shall call it film resistance. This guantity
is assumed to be known and enters as a parameter into
the present calculations. Qur aim is to determine the
constriction resistance.

Previous estimations of the constriction resistance
have been based on special models for the geometry of
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the rough surfaces. In most of them a regular arrange-
ment of single circular contact spots is considered. In
practice, however, there exist very different arrange-
ments and various shapes of the contact spots and it is
not clear to what extent the results obtained for special
models are valid in more general cases.

In a previous paper [1] the authors proposed an
alternative approach to this problem. Instead of
calculating approximate values, one may determine
rigorous lower and upper bounds for the effective
contact resistance by means of variational principles.
The method has been developed for the following
model. The rough surfaces are approximated by the
plane z = 0. The heat transport across this plane is
determined by a random local contact resistance
defined by

AR)
= (K/2) ——

wy(R) = (K/ )q(R) ;
where K denotes the thermal conductivity of both
bodies in contact. The local contact resistance w,,
describes the geometry and the positions of the contact
areas as well as the film resistance caused, for instance,
by surface layers. In general, w,(R) takes low values
inside the areas of direct contact and high values
outside them. Due to the strong variations of wy, the
jump in temperature at the surfaces AT(R) as well as
the heat flow density g(R) are strongly fluctuating
functions of position. Besides equation (1.1) these two
quantities are connected by the following integral
equation derived in [1]

PAT(R) = (2/K) JPq(R)

R =(x ) (L.1)
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where the integral operator J, applied to an arbitrary
function f; is defined by

1
—_ 2R’ ’
JfR) = jd R —ZnR/f(R + R’). (1.3)

The projection operator P yields the deviations of a
function f from its mean value {f)

Pf(R) =f(R) — {f(R))

where the angular brackets denote an average over an
area A very large compared to the single contact spots

(1.4)

1
SR =~ j d’Rf(R). (1.5)

A

In the following we always take the limit of an
infinite plane A — cc. The effective thermal contact
resistance R, measured in a macroscopic experiment
is given by

(AT)
Ry = ——
0

with the total heat flow

(1.6)
0= J- d’Rg(R) = A(q). {L.7)
A

Analogously to equation (1.1) we can define an
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effective quantity wg
K (AT)

Wege = 7

~ 7 1.8
2 L (18)

Ryr = (1.9)

—— Wegs-
K A eff

By the aid of variational principles given in ref. [1],
we may derive various upper and lower bounds w, and
w_ confining the actual value of w; (or Ry ) to the
interval

Wy = W = W_. (1.10)

The bounds involve statistical information about the
local contact resistance w,,. To get a good estimation of
W, the bounds should be as narrow as possible.

In this paper we only deal with general upper
bounds which can be obtained from the following
variational principle [1]

wi =L {G(wy + IP)G) = Wey.

For every § equation (1.11) yields an upper bound on
wese- Equality holds for the exact heat flow density § =
q(R) satisfying the stochastic integral equation

(Ws( + JP)q = <wsl q> = Wegs <‘I>

In order to derive a useful bound we have to choose a
trial function §(R) which fits the exact field g(R)
sufficiently well.

In section 2 we start with very simple trial functions
for the heat flow density to deduce bounds according
to equation (1.11). To get a better bound, a more
sophisticated trial function is constructed in section 3.
By means of this function a general expression for an
upper bound including only the two-point moment of
the stochastic field w,(R) is derived in section 4. In
section S this bound is specified to a binary model for
the local contact resistance. Finally in section 6 a
comparison is made with a bound previously obtained
for an arbitrary distribution of circular contact spots
[1]. Numerical results are drawn for a triangular
lattice.

(1.11)

(1.12)

2. SIMPLE UPPER BOUNDS

To calculate an upper bound according to equation
(1.11) we have to choose a trial function §(R) for the
heat flow density. The simplest approximation is a
constant field

4(R) = qo 21)

which yields

w, = {wy(R)). (2.2)

In general this bound is not very satisfactory. In the
case of an infinite local contact resistance outside the
contact spots this bound even diverges.

We find a more reasonable bound if we choose the
trial function § in such a way that the corresponding
temperature jump AT becomes constant, i.e.

KATR) KT,

AT(R) = T,; G(R) = 2 wyR) 2w, (R)

(2.3)
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Inserting this expression into equation (1.11) we get
the following bound

=G G fﬂ'
2nR'< «R) Pws.(R + R’)>

< >ﬂ1 J‘ dZR’ W(R) 2.4
where
. /IN?/ 1 1
T.(R) = <w—> <wst(R)Pwm(R T R'>>
1 -2 i 1
N <§7> <ws.(k) wa(R + R')> - @)

According to equation (1.5) the angular brackets
always mean an average with respect to the position R.
The bound (2.4) contains only partial information
about the local contact resistance w,,. Besides the mean
value of 1/w,, only the two-point moment of this
stochastic quantity is involved. It characterizes the
correlation between the values of 1/w,, at two different
points separated by the vector R’

In order to illustrate the meaning of the bound (2.4)
let us consider the special example of a ‘binary’ model
in which the stochastic parameter w,, takes only two
values w; and w, inside and outside the contact spots,
respectively

wa(R) = w;O(R) + w,(1 — O(R))

= (wi - Wc) Q(R) + W, (26)
1 1 1 1
=[— — — JOR) + —, 27
ol ®) (wi ) ®+is @D
where the step function @ is defined by
OR) = 1 forR 11‘1 a contact spot, (2.8)
0 otherwise.

This model represents a good approximation to the
actual situation in many practical cases. Inserting
equation (2.7} into the bound (2.4), we obtain

_ . 2
IR} = (“’—w“i) (OROR + R — a2)

W, — W
w

i)z a(l —a)T(R) (29)

Wy =g (—‘3’—‘—”’) a(l - a)l, (210)
w w
where
Wwi=aw, + (1 — a)w, (2.11)
a: = {O(R)> (2.12)
I:= J‘dZR’ -T'(R") (2.13)
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I'RY): = [<®(R)®(R +R) —a’] (214)

a(l —

The symbol a denotes the area fraction of the

contact spots. The function I'(R’) depends only on the

geometry of the contact area. It is defined in such a
manner that

(o) =1

im rRy=o
R )

(2.15)

The latter equation expresses the fact that for large
distances there is no correlation between the contact
areas. A rough measure for the range of the correlation
function ['(R’) is given by the parameter I, which,
therefore, we shall call correlation length. In general, it
is of the same order as the size of a single contact spot.

As mentiened above, the upper bound (2.10)
consists of a term describing the parallel connection of
the local contact resistances and another term due to
the constriction of the heat flow density. It turns out
that the constriction effect is mainly characterized by
the correlation length .. For the limiting cases a = 0
and a = 1 the bound (2.10) becomes equal to the exact
values w, and w;,, respectively. The limit w./w, —» 0 is of
particular interest. It means that there is no heat
transfer outside the contact spots. Then equation
(2.10) reduces to

I.. (2.16)

This bound is simply the sum of the film resistance of
the contact spots and the constriction resistance which
now only depends on the geometry of the contacts.

The upper bounds obtained in this section are based
on very simple trial functions g(R). It is possible to
derive a more restricting upper bound without includ-
ing more information about w, than in bound (2.10),
i.e. the two-point correlation function I' {R"). To this
end we are going to construct a new, more appropriate
trial function in the next section.

3. CONSTRUCTION OF A TRIAL FUNCTION

To derive a suitable trial function we start from
equation (1.12) which determines the exact field ¢g(R).
A formal solution may be obtained as follows [2, 3].
We first split up the operator w, + JP into a
homogeneous non-stochastic operator L, and a sto-
chastic term w'

Lo:=w, + JP
wW(R) = wy(R) — wo.

(3.1)

The constant parameter w, will be fixed later. Inserting
the decomposition (3.1) into equation (1.12), we obtain

(Lo + Pw)g = wolg> = Lo{q>. (3.2)

The last equality holds because P<{g) = 0. Using
operator calculus and denoting the inversion of an
operator by the exponent ‘— 1’ and the unity operator
by ‘1, we can transform equation (3.2) into
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g= 01+ GoPW) '<(q>, Gy:=Lg".

Equation (3.3) represents only a formal solution of
equation (1.12) since the inversion of the operator
(1 + GyPw') is unknown. In order to construct a
practicable trial function we could replace G, by a
number but this would lead back to an expression
of the type (2.3). Therefore we first transform equation
(3.3) into

g = (1+GoPw — G PW)(1 + G,Pw) ' {g)
=[1 = GoPwW (1 + GoPW) '] (g

and then replace the operator G, in the denominator
by a constant parameter y. The result is the trial
function

(3.4)

d=(1+G,PB)<{q) (3.5)
with
B:= — w(l + yPw)" .. (3.6)

Since in the following the operator B is only applied to
a constant field (g)> we may also write (see Appendix)

B{g> = b{q) (3.7)
bi= —w(l + ) {1 +yw) > (38)
where b is not an operator but an ordinary function of

position.

4. A GENERAL UPPER BOUND

Inserting the trial function (3.5) into the variational
principle (1.11), we obtain the bound

W = <@ <[l + GoPb){§>]
x (W + Lo) [(1 + GoPb)<]D.

Since the operator L,, G, and P are self-adjoint in the
sense of

CSRLof,(R)) = < f,(R)Lo f1(R))

where f; and f, are arbitrary functions of position,
equation (4.1) may be transformed into

wi) = (Lo + W + 2Pb + 2w'G,Pb
+ bPGoPb + bPGow'G,Pb). (4.3)
Because of the definitions (1.4) and (3.8), the relations

(P..>=0 (4.4)

4.1)

4.2)

and
yWPh) = yw'(b—<b>)) = (—w' —b)> (4.5)

hold. With their help, expression (4.3) becomes, after
some transformations,

w) = <wy — b — b(G, — y)Pb
+ bP(G, — yW(Gy — Y)Pb). (4.6)

The last term on the RHS of equation (4.6) contains
two integral operators G, Hence its calculation
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requires the knowledge of the three-point moment
(bR W'(R,)b(R;)> of the stochastic fields b(R) and
w(R). In most practical cases this information will
hardly be available. But we can eliminate this term by
choosing

wo = max(wy(R)), w =wy —w, <0. (4.7)

Then the term becomes negative definite and if we omit
it we obtain a new, greater upper bound

w, = wo—<b) —(b(Go—7)Pb) = W) > w.
(4.8)

Let us recall that G, is an integral operator and,
therefore, the last term reads in more detail

(b(Go—7)Pb) = [ ’R'(B(R)[Go(R—R')

- y3(R—R)]Ph(R')). (4.9)

The bound (4.8) involves only a two-point moment of
the stochastic quantity b. The explicit form of the
operator G, can casily be obtained in the Fourier
representation. Let us define a function v by

v(R) = GyPb. (4.10)
Its mean value vanishes
MR)Y =Go(Pb) =0 4.11)

due to the definition of P(1.4). Applying the operator
L, to equation (4.10) yields the integral equation

Lov(R) = (wo + JPWv = (wy + J)v = Pb(R)  (4.12)
for v. A Fourier transformation leads to
(wo + k™) w(k) = Pb(k)

v(K) = Go(k)Pb(k) = (w, + k™)' Pb(k). (4.13)
The kernel function G4(R) could be obtained from an
inverse tansformation according to
Go(R)P = | d?k e*® G(k)P

= [d’ke™(w, + k)P (4.14)

But in the following only the Fourier representation
Gy(k), equation (4.13), will be used.

Let us recall that equation (4.8) represents a bound
for arbitrary values of y. In order to get an upper bound
as low as possible we have to minimize expression (4.8)
with respect to the open parameter y. Using the self-
adjointness of the corresponding operators and the
identity

¢
o <b> = <bPb, (4.15)
y
we obtain the following implicit equation which
determines the optimal value of y

ow,

ol
=2 <% (Gy ~ y)Pb> =0.  (4.16)
by Y

We have to bear in mind that the function b(R) also
depends on y. Therefore, only in special cases the
optimal value of 7 can bé calculated explicitly from
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equation (4.16). In the next section we shall consider a
binary model of w,. In this case, the solution of
equation (4.16) can easily be found.

5. BOUND FOR A BINARY MODEL

In the binary model we assume that according to
equation (2.6), w,, takes only two distinct values w; and
w, inside and outside the contacts, respectively. Then
equation (4.7) requires
5.1

Wo = W, > W,

and the function b(R) given by equation (3.8) takes the
simple form

b(R) = b,O(R) (5.2)
by = (w, — w)[1 - y(1 —a)w, —w)]~". (5.3)

Let us now calculate the parameter y, determined by
equation (4.16). Inserting equation (5.2) into equation
(4.16), we find
ob,
%, [OG, — PO =0 (54)

In more detail this equation reads (y — 7,)

Jd’R'G,(RKOR)POR +R')> = 7,{OR)PO(R)>

Yo = a(l —a)"dZR,GO(RI)[<®(R)®(R+R’)> — aZ]
= [ d’R'G,(R)(R") 55)

where the correlation function I'(R’) is defined in
equation (2.14). Using the Fourier transformation of
the operator G, (4.13) and taking into account equa-
tion (5.1), we can rewrite equation (5.5) in the form

1 e
V0=Fjd2k(we+k Y7 T(k),

rk) = # [ d2Re™ T(R). (5.6)

To discuss the limit w, — oc it is more convenient to
express y, as follows

1 (1 1
=" |axk (1 - rk
Yo we{4n2f < 1+wek) ()}

1 [ 1 T
=—<T(R=0) - —=>=—{1—-——1] (57)
We We WC WC
with
- 1 w
I = — |k —=——T(k). 5.8
¢ 4n? 1+ wk ®) 63

The characteristic length I, depends on w, but in the
limit w, — oc it coincides with the geometrical quan-
tity I, already defined in equation (2.13) and which
reads in Fourier representation

[Tc Sl = 417 szki (k) for w, - x} (59)

Now let us return to the calculation of the upper

HMT 25:8 « K

I'(R) =
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bound (4.8). From equations (5.4) and (5.2) it is easy to
see that the term (b(G,—y,)Pb) vanishes together
with (5.4). Therefore, the bound reduces to

w, =w, — {(BR)). (5.10)

Inserting (5.2) into equation (5.10) we obtain, after
some straightforward algebra,

we[w;+ (1 —a)(l —wyw)L]
(1 —a)w; +aw, + (1 —a)l—w/w,),

w, = .(5.11)

This upper bound is the main result of this section. It
depends only on the two discrete values of the local
contact resistance, on the area fraction of the contacts
and on the parameter [, which is a functional of the
correlation function I" according to equation (5.8). For
the limiting cases @ = 0 and a = 1 equation (5.11)
yields the exact values w, = w, and w, = w,,
respectively. In the limit w, = oc the bound (5.11)
coincides with the bound (2.16). For finite w, the
bound (5.11) proves to be always lower than the bound
(2.16). In most cases the relations w, >» I, w; will be
satisfied. Then an expansion of equations (5.8) and
(5.11) yields

N 1 2
=l -— Tk=0h>=4+0 (—) (5.12)
2w, I W,
w, l—a l—aw + 1
wy =2+ )1 - Witle
a a a w,
1—al Tk=0
lzalk, ([TR=0, Wy (5.13)
a w, 2nl, I

6. CIRCULAR CONTACT SPOTS

To check the usefulness of the bound obtained in
equation (5.11) let us now calculate it for the special
case of an arrangement of circular contact spots of
equal radii. For this model an upper bound had
already been derived in a previous paper [ 1] by the use
of another trial function adapted to this special
geometry. Moreover, this calculation had been re-
stricted to the limiting values w; = 0 and w, = oc. As
discussed above, in this case the bound (5.11) reduces
to the last term of equation (2.16) which we want to
compare now to the result previously obtained in [1].
The contact area is described by a sum

OR) = ) O°(R —R)) (6.1)

0
O‘(R) = {1 for |R| Z R, 6.2)
where ©° characterizes a single contact spot of radius
R, and R; denotes the centre of the ith contact.
Inserting equation (6.1) in (2.13) we find the special
correlation function

1 < _ < 1 a2

IN)

= ! [Z (OR-R)O(R+R —R))>
a(l —a)

i
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+ Y (@°R-R)O°(R+R —R))> — az]. (6.3)
i#]

Due to the definition of the angular brackets (1.5) the
average (®°(R—R,)®°(R+R’—R,)> depends only on
the difference vector (R’ + R; —R). Considering a very
large area A — oo with a great number of single
contacts N —» o0 (N/A = n = const.), we may replace
the sum over the pairs i # j by an integration over the
difference vector (R;—R;) = R, weighted by the pair
distribution function p(R,) normalized to (N — 1). In
the following instead of p we shall use the pair
correlation function g(R,) of the contacts which is
related to p(R,) by

P(Ry) = n[1 + g(Ry)] (6.4)

so that g vanishes at infinity. Now equation (6.3} can be
written as

I'(R) = [N(O*(R)O°(R+R))

a(l — a)
+ N [d*Ran(1+g(Ry))

X (O (R)@(R+R+R,)> — a?] (6.5)
or, according to equation (1.5)
no__ 1 2 C c ’
I'R) = al —a) [n{d’RO(R)O°(R +R)
+ n? [d*Ry [d’R(1 + g(Ry)
x @(R)O*(R+R +R,) — a*]. (6.6)

This equation contains convolution integrals which
may be reduced to products by a Fourier transfor-
mation. Then, using

a = nnR} 6.7)
and
. 2R
[ d?Re™® @(R) = % J,(kRy)  (68)

where J, is the Bessel function of first order, we obtain

! 4—"Jf(klz(,)[lJrig(k)]. (6.9)
nR

I'k)=——-
&) 1—ak? 2

If equation (6.9) is inserted into expression (5.9) for [,
the bound (2.16) becomes for w; = 0

2, J1kRo)
—3 9

R, (* . Jx) 1
=— d + d’k k
YT L s n*R} k3 (k)
8 R, | R
=-——4 — |d*Rep | — |Jg(R 6.10
i a +R0 w(Ro)g( ) (6.10)
where
2 (= . J¥(x
olp) =2 f ax ) 611)
7 Jo x

The bound obtained in [ 1] has a completely analogous
form. To distinguish it from the present result we
designate it by an index 1

7 R, d’R R
wi = it R, J-R—%(pl <R—o>g(R) 6.12)
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where

1 ¢
1(p)i= e szp'(l — ) 12 e%p)

x B@V(p—p’) + {1 — O%(p—p)

x arcsin(jp — p'[7") |- (6.13)

For small area fractions of the contacts a « 1 the first
terms in the bounds (6.10) and (6.12) become pre-
dominant. They correspond to the parallel connection
of isolated circular contact spots. In the limit a — 0 the
first term of (6.12) gives the exact result because the
exact heat flow distribution of an isolated circular
contact

g0(1 = R*/R})

q(R) = {0 for R $ R,

(6.14)
had been used to derive this bound. Contrarily, the
bound (6.10) has been calculated by assuming a
constant heat flow density inside the contact spot
according to equation (2.3). Despite this crude approxi-
mation the first term in (6.10) lies only 8%/ above the
corresponding exact contribution in equation (6.12).

The second terms in the bounds containing the
correlation function g differ only little from one
another. This can be seen from Fig. 1 representing the
functions ¢ and ¢,. Their maximal difference amounts
about 10% for small values of p and their asymptotic
behaviour for p — oc is the same. In order to illustrate
the influence of these terms for finite area fractions, the
bounds (6.10) and (6.12) have been calculated for a
triangular lattice of circular contact spots. The results,
multiplied by the factor 4a/nR,, are plotted in Fig. 2.

In general the bound w, lies above the bound (w ., ),
previously obtained. This is not surprising because, in
order to derive (w . ),, the special shape of the contact
spots has been taken into account from the beginning,
whereas the bound w, contains information about the
geometry only in form of the two-point correlation
function I" which does not uniquely characterize the
shape of the contact spots.

03 ¢

FiG. 1. Numerical calculation of the functions ¢ and ¢,
defined by equations (6.11) and (6.13), respectively.
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4aw, 1R,

0 " 1 . 1 L L 1
Q 0.2 04 0.6 08

FiG. 2. Upper bounds w, (6.10) and (w, ), (6.12) (multiplied
by the factor 4a/nR,) for a triangular lattice of circular
contact spots as function of the area fraction a.

7. CONCLUSION

Starting from a variational principle given in a
previous work [1], we have calculated upper bounds
for the macroscopic or effective contact resistance. By
the use of a simple trial function for the heat flow
density we could obtain a bound which involves only
the two-point correlation function of the random local
contact resistance. It consists of two terms. The first
one corresponds to the parallel connection of the local
contact resistances. The second one is a functional of
the two-point correlation function and may be in-
terpreted as an estimation of the constriction effect. A
more restrictive bound without including more infor-
mation about the local contact resistance could be
derived by means of a more sophisticated trial func-
tion. This bound has been discussed for the special
case of a binary model in which the local contact
resistance takes only two distinct values inside and
outside the contact spots, respectively. If the local
contact resistance outside the contacts is very high, the
two bounds differ only slightly from one another. To
test the quality of the general bound derived in this
paper, we have applied it to the special geometry of an
arbitrary arrangement of identical circular contact
spots and then compared the result to a special bound
derived previously for this case. The agreement is
satisfactory.
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In order to apply the bound derived above we need
the values of the local contact resistance as well as the
two-point correlation function of the contact area
distribution. Both must be taken from experiments or
from other considerations. To get a satisfactory es-
timate of the effective contact resistance it would be
desirable to find also lower bounds. But, unfor-
tunately, the derivation of lower bounds seems not to
be possible without very special assumptions about the
geometry of the contact spots.

APPENDIX
Proof of equation (3.8)
Let us set
v=(1+7yPw) " {p (A1)
or
(L+yPw)v=(1+yw)y —Kwv) ={(>. (A2)
Because of (P ...> = 0 an average over (A2) yields
W =L. (A3)
From (A2) we find
v=(1+9w)"1 () + y<ww)) (Ad)
and
v =0 +yw) 7 (g + y<wv)). (AS)
Dividing (A4) by (AS5) and considering (A3) gives
v={(1+yPw) <
=1L+ w)7 L +yw) D7 ). (A6)

Apart from a factor (—w’) this agrees with relation (3.8).

REFERENCES

1. M. Bobeth and G. Diener, Variational bounds for the
effective thermal contact resistance between bodies with
rough surfaces, Int. J. Heat Mass Transfer 25, 111-117
(1982).

2. P. H. Dederichs and R. Zeller, Variational treatments of
the elastic constants of disordered materials, Z. Physik
259, 103-116 (1973).

3. E.Kréner and H. Koch, Effective properties of disordered
materials, SM Archives 1, 183-238 (1976).

LIMITE SUPERIEURE DE LA RESISTANCE DE CONTACT THERMIQUE
EFFECTIVE ENTRE DEUX CORPS A SURFACES RUGUEUSES

Résumé—Dans un article précédant [Int. J. Heat Mass Transfer 25, 111-117 (1982)] des principes
variationels ont été donnés, a partir desquels des limites inférieures et supérieures de la résistance de contact
effective peuvent étre déduites. Ici on utilise cette méthode pour déterminer des limites supérieures pour une
distribution et des formes arbitraires des taches de contact. Les limites dépendent de la fonction de
correlation binaire de la résistance d= contact locale. En particulier, on considére un modéle binaire
n’admettant que deux valeurs discrétes de la résistance de contact locale, a savoir a I'intérieur et 4 I'extérieur
des taches de contact. La résistance de constriction est surtout caractérisée par une longueur de correlation
des taches de contact. Les résultats obtenus sont comparés 4 la limite spéciale pour des taches circulaires
donnée dans l'article précédant.
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OBERE GRENZEN FUR DEN EFFEKTIVEN WARMEUBERGANGSWIDERSTAND
ZWISCHEN KORPERN MIT RAUHEN OBERFLACHEN

Zusammenfassung—In einer friiheren Arbeit [Int. J. Heat Mass Transfer 25, 111-117 (1982)] wurden
Variationsprinzipien angegeben, mittels derer obere und untere Grenzen fiir den effektiven Warmeiibergangs-
widerstand berechnet werden konnen. In vorliegender Arbeit wird diese Methode zur Bestimmung oberer
Grenzen bei beliebiger Form und Verteilung der einzelnen Kontakte angewandt. Die Grenzen ergeben sich
als Funktionale der Zweierkorrelationsfunktion des lokalen Kontaktwiderstandes. Insbesondere wurde ein
binares Modell betrachtet, in welchem der lokale Kontaktwiderstand nur zwei diskrete Werte innerhalb bzw.
auBerhalb der Kontaktfiichen besitzt. Der Konstriktionswiderstand wird im wesentlichen durch eine
Korrelationslinge der Kontaktflichen charakterisiert. Die Ergebnisse werden mit der in der fritheren Arbeit
speziell fiir kreisformige Kontakte erhaltenen Grenze verglichen.

BEPXHUE 'PAHULIbI 3¢PEKTUBHOI'O KOHTAKTHOI'O TEIIJIOCOINIPOTUBJIIEHUA
MEXAY TEJJAMH C MEPOXOBATBIMHU ITOBEPXHOCTAMMU

Annotanus — B npensiayiueit pa6ore [1, Int. J. Heat Mass Transfer, 25, 111-117 (1982)], BapuauuoH-
Hbl€ NPAHLUHMOBL OBLUTH MCNIOJIB30BAaHB! Ul [OJYYEHHS HIDKHHX M BEPXHMX TpaHMIl 3(pQeKTHBHOro
KOHTAKTHOTO TEIJIOCONPOTHBIEHUsA. B HacTosmed paboTe HCMOMB3yeTCs 3TOT METOM /Ul BBLIYHCIIEHAR
BEPXHHMX TpaHMI mpu J000H reoMeTpHH U pacnpedeneHust obnacTedl compukocHoseHHs. ['panunbl
ABJIAIOTCA GyHKIMOHAIAMH [TAPHON KOPPEIAIMOHHON (DyHKIMH TOKAJIbHOIO KOHTAKTHOIO CONMpPOTHUBIIE-
uug. B HacTtHocTH Obuta paccMOTpeHa OWHapHash MOZENb, B KOTOPO# CYIIECTBYIOT TOMBKO JBa
3Ha4eHHs JIOKAJBHOTO KOHTAKTHOTO CONPOTHBICHHs Mu60 BHe JUOO BHYTPH KOHTAKTHBIX obnacTeil.
CONpOTHBJICHAE CTATUBAHUS XaPaKTEPH3YeTCs KOPPEJIALHOHHOM MTHHOM obsacTeif COPHKOCHOBEHHUS.
PesynbTaTel CPaBHHBAIOTCS CO CHELHAJBHOM IpaHHUEd U1 KPYIJIbIX obJyacTeil CONMPHKOCHOBEHHMS,
nonyueHoi B [I].



